АННОТАЦИИ СТАТЕЙ В ЖУРНАЛЕ «ТЕЛЕКОММУНИКАЦИИ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» 2021. Т.8. №1.

«Цифровые технологии радиосвязи и телерадиовещания»

СПОСОБ ПЕРЕХВАТА GSM-СИГНАЛОВ С ПОМОЩЬЮ SDR-ПЛАТФОРМЫ HACKRF ONE $\mathit{Cmp.}~5$

Николаев Владимир Владимирович, ассистент базовой кафедры ЦУиСЗИ института Кибернетики, РТУ МИРЭА Москва, Россия, fredfred9033@mail.ru

Михайлов Вячеслав Эдуардович студент МТУСИ, Москва, Россия, vmikhaylov95@yandex.ru

Ключевые слова: GSM, SDR, анализ трафика, зашифрованные данные, шифрование, злоумышленник, перехват, радиосигнал.

В статье представлено описание характеристик устройства SDR HackRF One. В первой части статьи проведен анализ функциональных возможностей данного устройства, предложены меры предосторожности при использовании SDR HackRF One. Во второй части рассмотрены различные области применения данного устройства. В третьей части статьи обозначены проблемы стандарта GSM, в частности, алгоритма шифрования A5/1, приведен пример перехвата и расшифровки SMS-сообщения с помощью SDR-платформы HackRF One и специального программного обеспечения, написанного для данного устройства. Целью статьи является рассмотрение современных подходов к анализу радиосигналов при помощи технологии SDR.

ОЦЕНКА ВЛИЯНИЯ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ СЕТЕЙ 5G НА ЧЕЛОВЕКА $\mathit{Cmp}.\ 13$

Сизов Дмитрий Викторович, инженер Сахалинского ОРТПЦ, ФГУП РТРС, г. Углегорск, Россия, deeemon8@mail.ru Панкратов Денис Юрьевич доцент кафедры СиСРТ, к.т.н., МТУСИ, Москва, Россия, dpankr@mail.ru

Ключевые слова: сети 5G, ICNIRP, неионизирующие излучения, технология Massive MIMO, Beamforming, безопасность электромагнитных полей, нормы на неионизирующее излучение, санитарные нормы для электромагнитных полей.

В последнее время завершается стандартизация сетей 5G, которые представляют собой дальнейшее развитие и расширение уже действующих сетей четвёртого поколения. В сетях 5G применяется как сантиметровый, так и миллиметровый частотные диапазоны, благодаря чему становится возможным применение антенных решеток с большим числом элементов (технология Massive MIMO). Указанные причины вызывают обеспокоенность научного сообщества и общественности влиянием излучения сетей 5G на человека. В данной статье рассматриваются новые технологии 5G и проблемы оценки биологического воздействия сетей 5G на человека с точки зрения существующих норм на излучение. Приведены нормы на излучение для различных стран, а также рассмотрены нормы на излучение, действующие на территории Российской Федерации. Рассмотрены основные организации, занимающиеся вопросами нормирования излучений электромагнитных полей. В статье рассматриваются и анализируются результаты семинара Международного союза электросвязи (ITU), проходившего в 2020 году и посвященного текущей ситуации по оценке безопасности сетей 5G для человека в мировом сообществе.

ТЕКУЩЕЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ СЕТИ 5G $\it Cmp.~21$

Мирошникова Наталия Евгеньевна, доцент кафедры РТС, к.т.н., МТУСИ, Москва, Россия, n.e.miroshnikova@mtuci.ru

Ермакова Анастасия Всеволодовна магистрант МТУСИ, Москва, Россия, msikisylia@gmail.com Бабенко Ксения Андреевна, магистрант МТУСИ, Москва, Россия, kcbabenko@yandex.ru

Ключевые слова: 5G, системы мобильной связи, методы модуляции, интернет вещей, когнитивное радио, динамический доступ к спектру

В статье рассматривается текущее состояние и перспективы развития сетей пятого поколения. Приведено сравнение методов модуляции, являющихся кандидатами в технологии физического уровня сетей 5G, рассматривается перспектива использования концепции когнитивного радио в системах пятого поколения, а также способы решения проблемы доступа в частотному ресурсу.

ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДОВ ВИЗУАЛИЗАЦИИ ОДНОКОНАЛЬНЫХ ИЗОБРАЖЕНИЙ В УСЛОВНЫХ ЦВЕТАХ

Cmp. 29

Власюк Игорь Викторович, доцент кафедры ТиЗВ к.т.н., МТУСИ, Москва, Россия, ru3dlp@yandex.ru Кремлева Элина Александровна инженер кафедры ТиЗВ, МТУСИ, Москва, Россия, krehlina@gmail.com

Ключевые слова: одноканальные изображения, цветовая обработка изображения, псевдоцвета, квантование по яркости, преобразование яркости в цвет, динамический диапазон, технология HDR, Tone Mapping.

В работе рассмотрены этапы представления черно-белых изображений в условных цветах для систем прикладного телевидения. Изложены принципы выбора условных цветов и их обхода с учетом необходимости сохранения представления об исходной яркости объекта и оптимизации его визуального контрастирования. Представлены результаты проведенной цветовой обработки изображений, расчет эффективности выбранных алгоритмов и результаты повышения динамического диапазона изображения с помощью технологии HDR.

ИСПОЛЬЗОВАНИЕ ВИРТУАЛЬНЫХ ЛАБОРАТОРНЫХ РАБОТ В ПРЕПОДАВАНИИ ДИСЦИПЛИНЫ «ОСНОВЫ КОМПЬЮТЕРНОГОАНАЛИЗА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ» Стр. 38

Григорьева Елена Дмитриевна, доцент кафедры ТЭЦ, к.т.н., МТУСИ, Москва, Россия, e.d.grigoreva@mtuci.ru

Шманев Антон Олегович, студент МТУСИ, Москва, Россия, aoshmanev@gmail.com

Казина Елизавета Владимировна, студент МТУСИ, Москва, Россия, lizakazinamtuci@gmail.com Тупиков Илья Владиславович, студент МТУСИ, Москва, Россия, worst.angr@gmail.com Каретина Марина Александровна, студент МТУСИ, Москва, Россия, m-karetina@mail.ru

Ключевые слова: виртуальная лабораторная работа, полосковые линии, среда программирования, программное обеспечение Visual C++, проприетарное программное обеспечение.

Современный процесс обучения строится на основе использования передовых технологий разработки телекоммуникационных устройств. Соответственно встаёт вопрос разработки совершенно

новых пособий для студентов, в частности таковыми пособиями являются виртуальные лабораторные работы, позволяющие упростить и ускорить процесс изучения нового материала. Основными плюсами подобного подхода является наглядность и гибкость в применении для исследования различных задач в области электрических цепей. Современный специалист в первую очередь должен чётко понимать и представлять физические основы процессов, протекающих в электронных цепях, так как в силу существования специализированного программного обеспечения ручной расчёт давно потерял свою актуальность. Однако использование специализированного программного обеспечения в процессе обучения студентов затруднено в силу дороговизны подобного проприетарного программного обеспечения. В свою очередь создание пользовательского приложения позволяет избавиться от ручных расчётов и сделать акцент на самой задаче и наглядном представлении её решения в формате графиков. Помимо того, разработка аналогичных программ или усовершенствование уже существующих является простой задачей, так как существует возможность использования ранее созданных DLL-библиотек, содержащих основные универсальные функции, в качестве основы для решения новых задач.

ПРИМЕНЕНИЕ МЕТАМАТЕРИАЛОВ В АНТЕННЫХ СИСТЕМАХ *Стр.* 44

Каравашкина Валентина Николаевна, доцент кафедры «Электроника», к.т.н., МТУСИ, Москва, Россия, v.n.karavashkina@mtuci.ru Машкова Маргарита Антоновна, студент МТУСИ, Москва, Россия, MargaritaMashckova20@yandex.ru Саргсян Александра Давитовна, студент МТУСИ, Москва, Россия, alexa.sargsyan@bk.ru

Ключевые слова: метаматериалы, метаструктуры, диэлектрическая проницаемость, магнитная проницаемость, электрически малые антенны, рупорные антенны, широкополосность, минитюаризация.

Представлена краткая историческая справка по развитию метаматериалов. Рассмотрена классификация метаматериалов по степени преломления и электродинамическим свойствам. Приведены примеры использования метаматериалов в радиотехнических устройствах. Описаны способы применения метаматериалов и метаструктур в конструкциях электрически малых и рупорных антенн и излучателей.

СИСТЕМЫ ПОДЗЕМНОЙ СВЯЗИ Стр. 51

Пронина Евгения Дмитриевна, ассистент кафедры СиСРТ, МТУСИ, Москва, Россия, e.d.pronina@mtuci.ru

Фильков Ярослав Дмитриевич, магистрант МТУСИ, Москва, Россия, jaroslav2468@mail.ru

Ключевые слова: системы подземной связи, метрополитен, мобильные операторы, беспроводная связь, оборудование связи в метро.

Приводятся данные о системах подземной связи (underground communication systems) и актуальности их использования в настоящий период времени. Рассмотрены типичные проблемы передачи беспроводных сигналов через толщи земной породы и возможные технологические решения передачи данных под землёй. Приводится информация о предоставлении услуг связи операторами в метрополитене и специфичные аспекты применения известных технологий при передаче данных.

ПЕРЕХВАТ УПРАВЛЕНИЯ МОДЕЛЬЮ КВАДРОКОПТЕРА Стр. 56

Орлов Владимир Георгиевич, главный специалист отдела ОНИРС, к.т.н., МТУСИ, Москва, Россия v.g.orlov@mtuci.ru

Рыбаков Денис Константинович, магистрант МТУСИ, Москва, Россия, empio@bk.ru
Суслин Максим Александрович, магистрант МТУСИ, Москва, Россия, suslik.ma@mail.ru

Ключевые слова: атака на радиоканал, SDR, скетч для прослушивания радиоэфира, библиотека rf24 arduino, , беспроводный модуль nrf24l01.

Рассмотрены принципы системы управления беспилотными летательными аппаратами (дронами). Приведены характеристики и обоснован выбор типа и конструкции модульного приёмопередающего устройства для перехвата управления моделью квадрокоптера. Предложен простой алгоритм реализации перехвата радиоуправления квадрокоптером на основе использования платы семейства Arduino и модифицированного программного кода. Рассмотрена процедура анализа перехваченных пакетных данных и определения протокола радиообмена информационными пакетами между пультом дистанционного управления (ПДУ) и дроном. Приведены результаты экспериментальной реализации перехвата сигналов управления моделью квадрокоптера и блокировки функционирования ПДУ путём синтеза и передачи на дрон переформатированных пакетных данных.

«Сетевые технологии и системы телекоммуникаций»

АНАЛИЗ ПРОЦЕДУР ОБЕСПЕЧЕНИЯ НАДЕЖНОСТИ ОКС7 И КОРРЕКЦИИ МАРШРУТИЗАЦИИ В ИМИТАТОРЕ СЕТИ ПД СПЕЦНАЗНАЧЕНИЯ $\it Cmp.~62$

М.А. Басараб Е.В.Глинская,

заведующий кафедрой ИБ МГТУ им. Н.Э.Баумана, д.ф.-м.н., Москва, Россия,

bmic@mail.ru

Р.А. Бельфер

доцент кафедры ИБ МГТУ им. Н.Э.Баумана, к.т.н., Москва, Россия, a.belfer @ yandex.ru,

ст. преподаватель кафедры ИБ МГТУ им. Н.Э.Баумана, Москва, Россия

glinskaya-iu8@rambler.ru

А.В. Кравцов

начальник отдела НИИЦ ЦНИИ ВВКО,

Москва, Россия

skyak78@gmail.com

В.Г. Орлов

главный специалист отдела ОНИРС, к.т.н., МТУСИ,

Москва, Россия,

v.g.orlov@mtuci.ru

Ключевые слова: имитатор сети (network simulator), сеть передачи данных (data transmission network), резервирование (redundancy), надежность (reliability), маршрутизация (routing), коррекция маршрутизации (routing correction), принудительная маршрутизации (forced routing).

Исследования зарубежных и отечественных специалистов выявили причину низкой надежности системы общеканальной сигнализации ОКС№7 сети ISDN по результатам более чем двадцатилетнего периода ее эксплуатации. Этот недостаток не удалось устранить, несмотря на проведенные работы в рамках международной организации по стандартизации ITU-Т. Показано, что одним из влияющих факторов на этот недостаток в системе общеканальной сигнализации ОКС№7 сети ISDN является сложность алгоритмов резервирования и маршрутизации. В статье рассматриваются и предлагаются менее сложные процедуры для реализации этих алгоритмов на примере их использования в имитаторе сети передачи данных специального назначения.

АНАЛИЗ МЕТОДОВ РЕЗРВИРОВАНИЯ В ОПТИЧЕСКИХ СЕТЯХ ДАЛЬНЕГО РАДИУСА ДЕЙСТВИЯ

Cmp. 69

Нетес Виктор Александрович, профессор кафедры ССиСК, д. т. н., с.н.с, МТУСИ, Москва, Россия, v.a.netest@mtuci.ru **Кудрявцева Александра Владимировна,** магистрант МТУСИ, Москва, Россия, motoko@bk.ru

Ключевые слова: Сети LR-PON, надежность, резервирование, AWG, WDM-PON, MASH, коэффициент готовности, Failure Impact, цена восстановления.

Представлен обзор типов и методов резервирования каналов LR-PON. Произведен анализ рентабельности и актуальности резервирования, как метода обеспечения надежности сетей в текущих рыночных условиях. Приведены алгоритмы оценки резервирования сетей на основе параметров надежности, учтены издержки в ходе эксплуатации при проведении аварийно-восстановительных работ.

СРЕДСТВА СОЗДАНИЯ ХРАНИЛИЩ ДАННЫХ Стр. 75

Беленькая Марина Наумовна, старший преподаватель кафедры СИТИС, МТУСИ, Москва, Россия, mn.belenkaya@mail.ru Некрасов Антон Анатольевич, магистрант МТУСИ, Москва, Россия, aa.nekrasov.w@gmail.com Гаврилов Сергей Олегович, магистрант МТУСИ, Москва, Россия, gavrilov.s1999@gmail.com

Ключевые слова: хранилища данных, витрины данных, ETL, проблемы разработки и сопровождения хранилищ данных, архитектуры схем БД, методологии хранилищ данных, выбор СУБД для хранилищ данных, средства управления и администрирования.

Описана роль хранилищ данных в корпоративной информационной системе. Рассмотрены основные сложности, возникающие при разработке и сопровождении хранилищ данных. Описаны схемы данных. Представлены методологии построения хранилищ данных иархитектура хранилищ данных. Дано описание основных модулей хранилища данных. Рассмотрено ПО, используемое при создании и администрировании хранилищ данных.

«Информационные технологии и автоматизация процессов в системах связи»

РАЗРАБОТКА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ СЕГМЕНТАЦИИ ВИДЕОПОТОКА В КВАЗИРЕАЛЬНОМ ВРЕМЕНИ

Cmp. 81

Городничев Михаил Геннадьевич, доцент кафедры МКиИТ, к.т.н., МТУСИ, Москва, Россия, m.g.gorodnichev@mtuci.ru **Власов Глеб Геннадьевич,** студент МТУСИ, Москва, Россия, gleb2605@bk.ru

Ключевые слова: искусственный интеллект, нейронные сети, компьютерное зрение, сегментация видеопотока.

В статье рассматривается механизм реализации интеллектуальной системы сегментации видеопотока в квазиреальном времени. Описываются процесс первичной обработки собранного набора данных (датасета) и его дальнейший анализ, а также структура свёрточной нейронной сети, используемая для решения данной проблемы.

ПРИМЕНЕНИЕ СИСТЕМ РАСПОЗНАВАНИЯ ЕДИНИЦ ВООРУЖЕНИЯ И ВОЕННОЙ ТЕХНИКИ

Cmp. 87

Воронова Лилия Ивановна,

заведующий кафедрой ИСУиА, д.ф.-м.н., профессор, МТУСИ, Москва, Россия, voronova.lilia@yandex.ru **Бауэр Елисей Владимирович,** аналитик Центра перспективных разработок и исследований ФГУП НПП «Гамма», Москва, Россия, severjanen@rambler.ru

Ключевые слова: БПЛА, YOLO, машинное обучение, искусственный интеллект, система распознавания, бронетехника, анализ данных, алгоритм, модель, авиация, автоматизированное управление войсками.

Бурное развитие в ведущих странах мира информационных технологий неизбежно привело к переосмыслению концепций применения систем распознавания, путей дальнейшего их развития и придания им многоцелевого характера. Системы распознавания на базе БПЛА занимают достойное место в производственных программах систем воздушной разведки военного назначения. Использование БПЛА в военных целях стало одним из важных направлений развития современной авиации и позволяет автоматизировать управление войсками, сократить потерю личного состава в бою за счет оперативной разведывательной информации о текущей обстановке. В этой связи актуальна задача создания мобильных, простых в эксплуатации и дешевых средств ведения воздушной разведки. Основой для распознавания объектов в реальном масштабе времени может быть алгоритм YOLO, предложенный Джозефом Редмоном (Joseph Redmon) и представляющий собой единую нейронную сеть, применяемую сразу ко всему изображению.

АНАЛИЗ СИСТЕМ МОНИТОРИНГА АВТОТРАНСПОРТА Стр. 94

Маликова Елена Егоровна, доцент кафедры ССиСК, к.т.н., МТУСИ, Москва, Россия, emalikova@gmail.com **Арсеньева Диана Горановна,** магистрант МТУСИ, Москва, Россия, ars.dian@yandex.ru

Ключевые слова: система мониторинга автотранспорта, метод анализа иерархий, бортовой терминал, датчики, трекер, сети подвижной сотовой связи.

В настоящее время для мониторинга автотранспорта, а также для повышения безопасности дорожного движения, используются интеллектуальные системы мониторинга. В работе приводится описание различных систем мониторинга автотранспорта, отмечены особенности аппаратных и программных частей этих систем. Рассмотрен метод анализа иерархий, позволяющий пользователям определить критерии, которыми должна обладать система мониторинга. Приведены результаты сравнительного анализа, с использованием метода анализа иерархий, основанном на функциях системы мониторинга автотранспорта, позволившие определить приоритетные системы мониторинга для компаний городской курьерской доставки.

ИСПОЛЬЗОВАНИЕ МЕТОДА С
RAMM ДЛЯ ОЦЕНКИ ИНФОРМАЦИОННЫХ РИСКОВ
 $\it Cmp.~103$

Докучаев Владимир Анатольевич, профессор, заведующий кафедрой СИТиС, д.т.н., МТУСИ, Москва, Россия, v.a.dokuchaev@mtuci.ru

Волкова Любовь Васильевна, магистрант МТУСИ, Москва, Россия, lvv.14@mail.ru Макарова Дарья Викторовна, магистрант МТУСИ, Москва, Россия, d4riya.makarova@yandex.ru

Ключевые слова: риск, управление рисками, защита информации, информационная безопасность,

СКАММ, информационные системы, уязвимости, методы управления рисками.

В статье рассматривается возможность применения метода CRAMM для управления информационными рисками в организациях. Актуальность данной проблемы вызвана всё увеличивающимися случаями утечки конфиденциальной информации в организациях различных видов собственности. В материале приведены основные этапы по оценке рисков при использовании метода CRAMM, показаны сложности формализации результатов анализа, в частности при оценке потенциальных рисков при создании и эксплуатации программно-конфигурируемых сетей центров обработки данных. В материале приводятся особенности метода CRAMM, рассматриваются его преимущества и недостатки. Показано, что данный метод может быть использован при анализе различных бизнес и (или) технологических процессов, требующих оценки рисков и выбора контрмер. Процесс управления информационными рисками позволяет значительно повысить эффективность и рациональность всех бизнес и (или) технологических процессов в организации, и незаменим при выработке политики информационной безопасности и обеспечении непрерывности ведения бизнеса.

РАЗРАБОТКА МАКЕТА УМНОЙ ТЕПЛИЦЫ Стр. 110

Вовик Андрей Геннадьевич, ассистент каф. ИСУиА, МТУСИ, Москва, Россия, andreyvovik@gmail.com Харламова Ирина Сергеевна, студент МТУСИ, Москва, Россия, kharlam905@mail.ru Савин Вадим Евгеньевич, студент МТУСИ, Москва, Россия, vadsavin@mail.ru Покутняя Людмила Святославовна, студент МТУСИ, Москва, Россия, poctnyaya@yandex.ru

Ключевые слова: IoT, ESP8266, Arduino, умная теплица, автоматический полив, удаленный контроль.

В статье описывается процесс проектирования и реализация умной теплицы с возможностью дистанционного мониторинга и управления на базе микроконтроллера Arduino. Показания с датчиков умной теплицы отправляются на MQTT сервер по технологии беспроводной связи на основе стандарта IEEE 802.11. Разработаны алгоритмы для обмена данными между сервером, Arduino и другими устройствами в сети Интернет, а также алгоритм автоматического полива растений с возможностью удалённого контроля влажности почвы и других параметров. Разработан протокол для управления подписками ESP на MQTT сервере по последовательному соединению.

ОБЗОР ПРОТОКОЛОВ СВЯЗИ ДЛЯ «УМНОГО ДОМА» Стр. 116

Шевелёв Сергей Владимирович, доцент кафедры СИТиС, к.т.н., МТУСИ, Москва, Россия, shevelev-s@yandex.ru

Федченков Дмитрий Сергеевич, магистрант МТУСИ, Москва, Россия, dimafed7@mail.ru

Ключевые слова: протоколы связи, интернет вещей, проводные протоколы, беспроводные протоколы, автоматизация дома.

В статье описаны стандарты протоколов связи «Умного дома». Исследование проводилось на основе известных стандартов связи умного дома (таких как 1-Wire, ZigBee, Wi-Fi и т.д.) Также проведено сравнение протоколов по таким параметрам как радиус действия, максимальная скорость передачи данных, сложность установки оборудования и т.д. В результате сравнения выявлена применимость протоколов связи для решения конкретной задачи.

ПРИНЦИПЫ ОРГАНИЗАЦИИ СИСТЕМЫ "УМНЫЙ ДОМ" НА ОСНОВЕ ТЕХНОЛОГИИ ZIGBEE ДЛЯ МАЛОМОБИЛЬНЫХ ГРУПП НАСЕЛЕНИЯ

Cmp. 123

Степанов Михаил Сергеевич, доцент кафедры ССиСК, к.т.н., МТУСИ, Москва, Россия, тінstер@yandex.ru Шишкин Дмитрий Витальевич, магистрант МТУСИ, Москва, Россия, draknem@gmail.com Поскотин Леонид Сергеевич, магистрант МТУСИ, Москва, Россия, svp_vpl@yahoo.com
Тургут Тимур, магистрант МТУСИ, Москва, Россия, hinhardian@gmail.com

Ключевые слова: Internet of Things, ZigBee, Умный дом, mesh-cemu, пожилые люди

Статья посвящена разработке системы "Умный дом" для маломобильных групп населения с использованием технологии ZigBee. Заданы основные и дополнительные требования, которые должны учитываться в данной системе. Приведено краткое описание последней версии протокола ZigBee 3.0. Представлены требования к оборудованию: серверу, видеокамерам, элементам сети ZigBee и устройствам измерения показателей здоровья. Даны рекомендации по реализации некоторых основных и опциональных требований к системе "Умный дом" для пожилого человека.

АНАЛИЗ АРХИТЕКТУРЫ СИСТЕМЫ УПРАВЛЕНИЯ И АЛГОРИТМА ПРОЕКТИРОВАНИЯ БЕСПИЛОТНОГО НАДВОДНОГО АППАРАТА $\mathit{Cmp.}\ 129$

Саксонов Евгений Александрович, профессор кафедры МКиИТ, д.т.н., МТУСИ, Москва, Россия, saksmiem@mail.ru Сорокин Александр Юрьевич, магистрант МТУСИ, Москва, Россия, sorokin.alexandr.2018@yandex.ru

Ключевые слова: система управления, управление надводным аппаратом, беспилотные надводные аппараты, управление беспилотным аппаратом, архитектура системы управления.

В данной статье приведён обзор развития беспилотных технологий на сегодняшний день. Обоснована их актуальность, показаны сфера применения и вектор дальнейшего развития. Представлен анализ архитектуры системы управления автономного надводного аппарата, предназначенного для использования на пространствах акваторий. Рассмотрены модули системы управления автономного надводного аппарата: блок управления, система навигации, система движения и система связи. Представлен общий алгоритм проектирования беспилотного надводного аппарата.

«Экономика и менеджмент в инфокоммуникациях»

ИССЛЕДОВАНИЕ АЛГОРИТМОВ МАТЕМАТИЧЕСКОГО ПРОГНОЗИРОВАНИЯ ОТТОКА КЛИЕНТОВ (CHURN PREDICTION) С ОЦЕНКОЙ ЭФФЕКТИВНОСТИ ОБУЧЕННОЙ МОДЕЛИ И ИНТЕГРАЦИЕЙ ПРОГНОЗА В ЭКОНОМИЧЕСКИЙ ЭКСПЕРИМЕНТ

Cmp. 135

Скородумова Елена Александровна, доцент кафедры ТВиПМ, к.ф.-м.н., МТУСИ, Москва, Россия, eas@mtuci.ru **Рубенчик Марк Ильич,** студент МТУСИ, Москва, Россия, <u>markrubenchik@gmail.com</u>

Ключевые слова: vameмamuческое прогнозирование, экономический прогноз, нейронные сети, линейная модель, оптимизация, исследование датасета, гиперпараметры.

Цель исследования — анализ стандартных предиктивных алгоритмов в рамках востребованной задачи в современных сферах, таких как телекоммуникации, маркетинг и банковская сфера. В расчетах используется датасет компании Orange, на базе которого будет проведено базовое статистическое исследование для выбора метрик, алгоритмов и методов оптимизации. Для получения информации об

эффективности			используется	тестовая	выборка,	по	которой	определяется
наиболее приемлемая модель.								